Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols
نویسنده
چکیده
Aerosol acidity is one of the most important parameters influencing atmospheric chemistry and physics. Based on continuous field observations from January 2005 to May 2006 and thermodynamic modeling, we investigated the spatial and seasonal variations in PM2.5 acidity in two megacities in China, Beijing and Chongqing. Spatially, PM2.5 was generally more acidic in Chongqing than in Beijing, but a reverse spatial pattern was found within the two cities, with more acidic PM2.5 at the urban site in Beijing whereas the rural site in Chongqing. Ionic compositions of PM2.5 revealed that it was the higher concentrations of NO−3 at the urban site in Beijing and the lower concentrations of Ca2+ within the rural site in Chongqing that made their PM2.5 more acidic. Temporally, PM2.5 was more acidic in summer and fall than in winter, while in the spring of 2006, the acidity of PM2.5 was higher in Beijing but lower in Chongqing than that in 2005. These were attributed to the more efficient formation of nitrate relative to sulfate as a result of the influence of Asian desert dust in 2006 in Beijing and the greater wet deposition of ammonium compared to sulfate and nitrate in 2005 in Chongqing. Furthermore, simultaneous increase of PM2.5 acidity was observed from spring to early summer of 2005 in both cities. This synoptic-scale evolution of PM2.5 acidity was accompanied by the changes in air masses origins, which were influenced by the movements of a subtropical high over the northwestern Pacific in early summer. Finally, the correlations between [NO−3 ]/[SO 2− 4 ] and [NH + 4 ]/[SO 2− 4 ] suggests that under conditions of high aerosol acidity, heterogeneous reactions became one of the major pathways for the formation of nitrate at both cities. These findings provided new insights in our understanding of the spatial and temporal variations in aerosol acidity in Beijing and Chongqing, as well as those reported in other cities in China.
منابع مشابه
Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols
We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92± 0.39 year-round, with no significant seasonal ...
متن کاملSpatial and seasonal variability of PM2.5 acidity in China
Introduction Conclusions References
متن کاملSpatial and seasonal variability of water-soluble ions in PM2.5 aerosols in 14 major cities in China
We analyzed PM2.5 aerosols from 14 major cities in China for concentrations of water-soluble (WS) major and trace elements (Na, Mg, Ca, K, Fe, Mn, Zn, Rb, Sr, Ba, Pb, S and Cl). The main focus was to examine patterns in spatial distribution and seasonal variability. Using principal component analysis, we identified three general sources for WS-elements in aerosols as anthropogenic, seasalts and...
متن کاملSummertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere
Strong atmospheric photochemistry in summer can produce a significant amount of secondary aerosols, which may have a large impact on regional air quality and visibility. In the study reported herein, we analyzed sulfate, nitrate, and ammonium in PM2.5 samples collected using a 24-h filter system at suburban and rural sites near four major cities in China (Beijing, Shanghai, Guangzhou, and Lanzh...
متن کاملDiurnal Variability in Secondary Organic Aerosol Formation over the Indo- Gangetic Plain during Winter Using Online Measurement of Water-Soluble Organic Carbon
Understanding the secondary organic aerosol (SOA) formation is among most important topics in the field of aerosol research because its poor understanding leads to large uncertainty in the assessment of aerosol effects on air quality and climate. This study reports the diurnal and temporal variability in SOA formation over a site (Patiala: 30.2°N, 76.3°E, 249 m amsl) located in the Indo-Gangeti...
متن کامل